Murine homologues of the Drosophila gustavus gene are expressed in ovarian granulosa cells.
نویسندگان
چکیده
Mammalian homologues of genes that control oogenesis in other organisms may play similar roles in mammalian ovarian development. In Drosophila melanogaster, GUSTAVUS (GUS) protein physically interacts with and is necessary for the proper posterior localization of VASA protein, and thus is required for specification of germ cells. We identified two mouse genes, SSB-1 and SSB-4 (SPRY domain SOCS box protein), whose protein products share 75% identity and are each approximately 70% identical to Drosophila GUS. Both SSB-1 and SSB-4 mRNA were detectable in mouse ovaries by Northern blotting of total and poly(A) + RNA, but were expressed in few other tissues. SSB-1 was detectable in testes, although the 3'-untranslated region of the mRNA was considerably shorter than the ovarian mRNA. In situ hybridization and RT-PCR analysis of ovaries revealed that both genes were expressed in granulosa cells at all stages of follicular development. In contrast, expression was barely detectable in in oocytes. Immunoblotting analysis revealed that SSB-1 protein was present in follicles at different stages of growth, and immunocytochemistry confirmed that SSB-1 and SSB-4 were detectable in granulosa cells of primary and subsequent stage follicles and that they were present in both mural and cumulus granulosa cells of antral follicles. These results establish that GUS-related proteins, which in Drosophila are restricted to the germ cells, are in the mouse instead expressed in the granulosa cells and are present throughout folliculogenesis. Based on their tissue-restricted pattern of expression and apparent abundance in granulosa cells, we propose that SSB-1 and SSB-4 play key roles in regulating granulosa cell physiology.
منابع مشابه
P-203: Examination of FMR1 Gene Transcription and Protein Expression in Patients with Diminished Ovarian Reserve Reffered to Royan institute
Background: Diminished ovarian reserve (DOR) is a primary infertility disorder characterized by a reduction in the number and/or quality of oocytes, usually accompanied by high follicle-stimulating hormone (FSH) levels and regular menses. DOR aetiology factors are different, such as genetic factors, ageing, autoimmune disorders, adrenal gland impairment factors and iatrogenic causes, e.g. chemo...
متن کاملMovento influences development of granulosa cells and ovarian follicles and FoxO1 and Vnn1 gene expression in BALB/c mice
Objective(s): Pesticides has wide range of infertility in female reproductive. This study was done to evaluate the effect of movento pesticide on development of granulosa cells and ovarian follicles and FoxO1 and Vnn1 gene expression in BALB/c mice. Materials and Methods: In this study 40 healthy BALB/c mice 5-6 weeks age were used. Animals were randomly allocated into four groups. Control (wi...
متن کاملI-24: Individualized Controlled Ovarian Stimulation (iCOS)
Background: With the recent development of recombinant gonadotropins (FSH and LH), it has become possible to further adjust the stimulation protocol according to the expected needs of the patient. In this respect, the possible beneficial role of exogenous LH activity supplementation for stimulated ART cycles has received increasing attention. According to the two-cell, two- gonadotropin theory,...
متن کاملThe effect of exosomes derived from human ovarian epithelial cancer cells on the secretion of AMH and Inhibin in granulosa cells
Exosomes are secreted by different types of cells and known as biological packages. Exosomes have significant role in intercellular communications and involved in the development and progression of various diseases such as cancer. Inhibin B and anti-mullerian hormone (AMH) are markers of granulosa cell tumors (GCT) and due to the role of exosomes in the progression of cancer, in this experiment...
متن کاملDIFFERENTIATION OF HUMAN OVARIAN FOLLICULAR GRANULOSA CELLS INTO KERATINOCYTES
Background & Aims: Stem cells are undifferentiated cells and are found in different tissues. These cells have capacity of self-renewal and differentiation into other lineages. Granulosa cells (GCs) are the multipotent stem cells. In the present research we evaluated the differentiation potential of GCs into keratinocytes. Material & Methods: GCs were cultured after enzymatic isolation from ova...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reproduction
دوره 131 5 شماره
صفحات -
تاریخ انتشار 2006